Nvidia has announced the first graphics card to support its RTX real-time ray-tracing technology, the workstation-class Quadro GV100, alongside a second DGX high-performance computer (HPC) for artificial intelligence and machine learning tasks.
Unveiled during the company's annual conference late yesterday, the Volta-based Quadro GV100 is the company's first to support the recently-announced RTX technology for real-time ray-tracing - a rendering technique which projects and maps light rays in order to render a considerably more realistic scene than would be possible using other rendering methods but which has previously been the realm of non-real-time rendering using vast server farms owing to its computational complexity.
Based on the same Volta V100 processor as the previously-announced Tesla V100 accelerator, the Quadro GV100 comes with 32GB of high-bandwidth memory and is said to offer 7.4 TFLOPs of double-precision, 14.8 TFLOPs single-precision, and 118.5 TFLOPs of deep-learning-specific compute performance. For those who need more, two cards can be combined using Nvidia's NVLink interconnect system. Naturally, none of this comes cheaply: With the Tesla V100 having only half the RAM, no graphics outputs, and lacking RTX support yet costing £8,820 (inc. VAT) in the UK, the higher-specification Quadro GV100 is unlikely to cost any less when it launches in the UK in the coming weeks.
At the same time, Nvidia also unveiled the DGX-2 high-performance AI-centric system - the successor, if the name wasn't clue enough, to the DGX-1 it unveiled back in 2016. Where its predecessor packed eight Tesla P100 boards and had a launch price of $129,000, though, the DGX-2 packs two primary boards each with eight Tesla V100 cards into its surprisingly compact chassis for a total of 16 GPUs and 512GB of High Bandwidth Memory 2 (HBM2), plus two Intel Xeon Platinum processors, 1.5TB of RAM, 30TB of NVMe-based SSD storage, and dual 10/25GbE network connectivity for an eyebrow-raising $399,000.
Other announcements made by Nvidia during the event include a partnership with Arm to bring artificial intelligence and deep learning to Internet of Things (IoT) and embedded devices, a new simulation system for autonomous vehicle development, and new deep learning technologies.
October 14 2021 | 15:04
In line with recent changes to data protection legislation in the UK and Europe we would like to direct you to our updated Privacy Policy here.
Want to comment? Please log in.